

Calibration Status of the Atmospheric Infrared Sounder (AIRS) on Aqua

Steve Gaiser

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Avenue, Pasadena, CA 91109

AGENDA AIRS Calibration Status

- Radiometric status
- Spectral Status
- Spatial Status
- Vis/NIR Status
- Summary

RADIOMETRIC APPROACH AIRS Calibration Status

Based on 2-point in-orbit calibration, with corrections for polarization and non-linearity (each < ~1.5%)

$$N_{sc,i,j} = \frac{a_o(\square_j) + a_{1,i}(dn_{i,j} \square dn_{sv,i}) + a_2(dn_{i,j} \square dn_{sv,i})^2}{1 + p_r p_t \cos 2(\square_j \square \square)}$$

$$a_o(\square_j) = P_{sm} p_r p_t [\cos 2(\square_j \square \square) + \cos 2\square]$$

$$a_{1,i} = \frac{N_{OBC,i}(1 + p_r p_t \cos 2\square) \square a_o(\square_{OBC}) \square a_2(dn_{obc,i} \square dn_{sv,i})^2}{(dn_{obc,i} \square dn_{sv,i})}$$

 $N_{sc,i,j}$ = Scene Radiance (mW/m²-sr-cm⁻¹) Psm = Plank radiation function $N_{OBC,i}$ = Radiance of the On-Board Calibrator i = Scan Index, j = Footprint Index q = Scan Angle. q = 0 is nadir. $dn_{i,j}$ = Raw Digital Number in the Earth View $dn_{sv,i}$ = Space view counts offset. a_0 = Radiometric offset. $a_{1,i}$ = Radiometric gain. a_2 = Nonlinearity p_rp_t = Polarization Factor Product d = Phase of the polarization

RADIOMETRIC ACCURACY AIRS Calibration Status

Simple radiometric transfer equations lead to exceptional accuracy: Pre-flight residuals < +/- 0.1K for >90% of channels

AIRS Calibration Status

- In-orbit special test data analyzed
- Consistent w/ pre-flight measurements
- Calculated for a 250K scene
- AIRS NEDTs look good in orbit

$$NEN_{scene} = Gain \square \sqrt{N_{scene}/N_{obc}} \square DN_{obc}^2 \square DN_{sv}^2 + DN_{sv}^2$$

RADIOMETRIC STABILITY AIRS Calibration Status

- Icing observed early in mission
- Detector
 responsivities are
 now stable
 (< 0.3%
 change/month)

SPECTRAL CHARACTERIZATION **AIRS Calibration Status**

SRF shapes well

characterized pre-launch

SRF centroids accurately determined pre-launch

SPECTRAL STABILITY AIRS Calibration Status

- The AIRS spectrometer has a 23-hour thermal time constant, measured pre-flight
- In-orbit spectral calibration provides the most sensitive measurement of instrument stability
- AIRS is extremely stable spectrally: < 0.03%/month shift

SPECTRAL STABILITY AIRS Calibration Status

SPECTRAL ACCURACY AIRS Calibration Status

- SRF centroids known to 0.5% FWHM based on the pre-flight model
- Validated to ~1.5% in all bands except M5
- Stability not in question for M5

GEOLOCATION ACCURACY AIRS Calibration Status

- Done by Dave Gregorich, based on MODIS approach
- Method is described in TGRS special issue
- Finds apparent shift of 2 km in cross-track direction

VIS/NIR Status AIRS Calibration Status

L1B and L2 products are in good shape, no significant liens. Current activities:

- Coregistration. An area-matching technique (comparing cloud patterns in ocean granules) is being used to assess the relative alignment of IR and Vis in instrument coordinates (line/sample).
- Geolocation. Similar area matching techniques will be applied in an earth-based coordinate system (lon/lat), allowing comparisons to AMSU, HSB, MODIS, MISR, and USGS data sets. This follows up on work reported previously by UCSB.
- Additional validation of cloud flags. UCSB reported excellent agreement between MODIS and AIRS-Vis/NIR cloud flags. Will now compare Vis/NIR to lidar results.
- Vis/NIR global surface maps. Refine data selection and smoothing criteria when generating global maps of surface-type. These maps are currently used in cloud detection, and to provide NDVI information in L1b files.

SUMMARY AIRS Calibration Status

- AIRS IR radiometric accuracy and precision are outstanding
- AIRS spectral stability is excellent
- Geolocation information is currently good to 1/5th an IFOV
- VIS/NIR is performing as expected